Closures of Finite Primitive Permutation Groups
نویسندگان
چکیده
Let G be a primitive permutation group on a finite set ft, and, for k ^ 2, let G be the Ar-closure of G, that is, the largest subgroup of Sym (ft) preserving all the G-invariant ^-relations on ft. Suppose that G<H^ G and G and H have different socles. It is shown that k ^ 5 and the groups G and H are classified explicitly.
منابع مشابه
On minimal subdegrees of finite primitive permutation groups
We study the minimal non-trivial subdegrees of finite primitive permutation groups that admit an embedding into a wreath product in product action, giving a connection with the same quantity for the primitive component. We discover that the primitive groups of twisted wreath type exhibit different (but interesting) behaviour from the other primitive types. 2000 Mathematics Subject Classificatio...
متن کاملOn the Relational Complexity of a Finite Permutation Group
The relational complexity ρ(X,G) of a finite permutation group is the least k for which the group can be viewed as an automorphism group acting naturally on a homogeneous relational system whose relations are k-ary (an explicit permutation group theoretic version of this definition is also given). In the context of primitive permutation groups, the natural questions are (a) rough estimates, or ...
متن کاملPrimitive permutation groups of bounded orbital diameter
We give a description of infinite families of finite primitive permutation groups for which there is a uniform finite upper bound on the diameter of all orbital graphs. This is equivalent to describing families of finite permutation groups such that every ultraproduct of the family is primitive. A key result is that, in the almost simple case with socle of fixed Lie rank, apart from very specif...
متن کاملPermutation groups and normal subgroups
Various descending chains of subgroups of a finite permutation group can be used to define a sequence of 'basic' permutation groups that are analogues of composition factors for abstract finite groups. Primitive groups have been the traditional choice for this purpose, but some combinatorial applications require different kinds of basic groups, such as quasiprimitive groups, that are defined by...
متن کاملWreath Decompositions of Finite Permutation Groups
There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding 'imprimitive wreath decomposition concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The r...
متن کامل